11.4 Videos Guide

11.4a

• The Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $b_n \le a_n$ for all n, then $\sum a_n$ is also divergent.

Exercise:

• Determine whether the series converges or diverges.

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$

11.4b

- The Limit Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, where c is a positive, finite number, then either both series converge or both series diverge.
- Two special cases:

 - If lim ^{a_n}/_{b_n} = 0 AND if ∑ b_n converges, then ∑ a_n also converges.
 If lim ^{a_n}/_{b_n} = ∞ AND if ∑ b_n diverges, then ∑ a_n also diverges.

Exercises:

Determine whether the series converges or diverges.

11.4c

•
$$\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^3}$$

11.4d

- $\sum_{n=1}^{\infty} \frac{6^n}{5^{n}-1}$ $\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1+k^3}$ $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n+2}}$